Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38392798

RESUMO

In this study, delta-12 desaturase was overexpressed in Yarrowia lipolytica using the single-copy integrative vector pINA1312 and multicopy integrative vector pINA1292, resulting in the engineered yeast strains 1312-12 and 1292-12, respectively. The content of intracellular linoleic acid (LA) in the 1292-12 strain was much higher than in the 1312-12 strain and the control group. One interesting finding was that the 1292-12 strain showed obvious changes in surface morphology. The 1292-12 colonies were much smaller and smoother, whereas their single cells became much larger compared to the control strain. In addition, the dry cell weight (DCW) of the 1292-12 strain was obviously increased from 8.5 to 12.7 g/L, but the viable cell number sharply decreased from 107 to 105/mL. These results indicated that increased LA content in Yarrowia lipolytica could induce morphological changes or even oxidative stress-dependent cell death. The reactive oxygen species (ROS) and malondialdehyde (MDA) were accumulated in the 1292-12 strain, while the antioxidant activities of intracellular catalase (CAT) and superoxide dismutase (SOD) were significantly decreased by 27.6 and 32.0%, respectively. Furthermore, it was also revealed that these issues could be ameliorated by the exogenous supplementation of vitamin C, fish and colza oil.

2.
Antonie Van Leeuwenhoek ; 116(4): 383-391, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36656419

RESUMO

Sucrose non-fermenting 1 (SNF1) plays a crucial role in utilizing non-glucose carbon sources and regulating lipid metabolism. However, the mechanism by which SNF1 regulates lipid accumulation in oleaginous filamentous fungi in response to nutrient signals remains unclear. In the present study, by analysing the growth and lipid accumulation of M. circinelloides on xylose under nitrogen limitation, combined with the transcriptional changes of each subunit of SNF1, the regulation of SNF1 between nutrient signal and lipid accumulation was explored. The results showed that with the increase of carbon/nitrogen (C/N) ratio, the xylose consumption and cell growth of M. circinelloides decreased, and the lipid accumulation increased gradually. The optimal C/N ratio was 160:1, and the maximum lipid yield was 4.1 g/L. Two subunits of SNF1, Snf-α1 and Snf-ß, are related to the regulation of lipid metabolism in response to nutrient signals from different external nitrogen sources. This is the first report on the transcriptional analysis of SNF1 subunits on xylose metabolism under nitrogen limitation. This study provides a basis for further understanding of lipid synthesis mechanism on xylose in oleaginous fungi, and it also lays a foundation for the genetic engineering of high-lipid strain.


Assuntos
Nitrogênio , Xilose , Xilose/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Mucor , Metabolismo dos Lipídeos/genética , Lipídeos
3.
Front Cell Infect Microbiol ; 12: 986350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439228

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells that play an important role in both innate and acquired immune responses against pathogens. However, the role of DCs in coronavirus disease 2019 (COVID-19) is unclear. Virus-like particles (VLPs) that structurally mimic the original virus are one of the candidates COVID-19 vaccines. In the present study, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) VLPs were used as an alternative to live virus to evaluate the interaction of the virus with DCs. The results revealed that SARS-CoV-2 VLPs induced DC maturation by augmenting cell surface molecule expression (CD80, CD86, and major histocompatibility complex class II (MHC-II)) and inflammatory cytokine production (tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and IL-12p70) in DCs via the mitogen-activated protein kinase and nuclear factor-κB signaling pathways. In addition, mature DCs induced by SARS-CoV-2 VLPs promoted T cell proliferation, which was dependent on VLPs concentration. Our results suggest that SARS-CoV-2 VLPs regulate the immune response by interacting with DCs. These findings will improve the understanding of SARS-CoV-2 pathogenesis and SARS-CoV-2 vaccine development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfócitos T , Vacinas contra COVID-19 , Células Dendríticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...